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Abstract: 
The Matched Illumination (MI) technique exploits the 

difference in spectral characteristic of target and clutter for the 
design of transmit waveform and receive filter. This results in less 
interference to the signal processor of a sensor, thereby 
increasing the Signal to Interference Noise Ratio (SINR). An 
important aspect of MI is accurate estimation of clutter and 
target spectra. In this paper we investigate conventional spectral 
estimation techniques and apply them to the concept of MI. We 
numerically evaluate the loss in performance of MI due to 
inaccurate estimation.  
 
Keywords: Matched Illumination, Spectrum Estimation, Clutter 
Power Spectral Density, Signal to Interference Noise Ratio. 
 

I   INTRODUCTION 
MI technique is based on exploiting different 

spectral characteristics of returns from target and clutter. 
The spectral characteristic of the response from target is 
usually different from that of the clutter. Exploiting this 
difference will result in selective rejection of clutter 
thereby increasing Signal to Interference Ratio (SINR) at 
the output of receive filter (matched filter in conventional 
radar case). In MI, modulation of transmission pulse and 
corresponding receive filter are adaptively matched to the 
environment. The sensor analyzes the environment in real 
time and based on the estimates of clutter and target 
spectra generates optimal modulation envelope for 
transmission and corresponding receive filter. This 
adaptive feedback loop results in rejection of clutter at 
receive filter stage and enhances detection of target both in 
clutter and noise conditions.  

The framework of MI has been focus of attention 
in recent past [1], [2], [3]. It has been reported that MI 
could potentially provide about 3-5 dB improvement in 
SINR for a radar, provided that the clutter power spectral 
density and target spectrum are known accurately at the 
receiver. A similar study [4] was undertaken in EADS on 
MI for various target and clutter scenarios. SINR 
improvements over conventional radars were observed for 
various target and clutter scenarios. The Ambiguity 
Function (AF) parameters of MI were also investigated [5], 
[6], which led to the conclusion that MI has better 
performance with regard to parameters like accuracy, 
resolution, side-lobe level, etc.  

Another aspect which has been investigated is 
generating constant amplitude transmit signal, which is 
typically required in radar transmitters [7], [8], [9]. Many 
schemes have been investigated that result in real-time 
computation of constant amplitude waveform even while 
keeping the desired frequency domain response of 
transmitted signal, as stipulated by MI technique. 

The MI technique requires good estimator of 
spectra of interference and target. Conventional radar 
modulations like LFM, NLFM can be used as sounding 
pulse to determine clutter and target spectra. The estimates 
of clutter and target spectra are built from the return (a 
priori knowledge of target position is assumed, as will be 
the case in track dwells of a multifunction radar). On the 
basis of the estimated spectra of interference and target, the 
transmit waveform for the next cycle and corresponding 
optimal receive filter is determined.  Transmit and receive 
filter can be recursively updated for subsequent cycles of 
transmission and reception. Accurate estimator of clutter 
and target are key as inaccurate estimation of clutter and 
target spectra will result in sub-optimal transmit waveform 
and receive filter, which will deteriorate the SINR 
improvement that MI could achieve.  

In this paper we address the problem of clutter 
estimation, incorporate it in MI framework and provide 
assessment of the loss of performance on account of 
inaccurate estimator. It is being assumed that target 
spectrum is known. Estimation of target spectrum will be 
taken up in future work. 

The paper is organized as follows. In section I an 
overview of MI technique is provided. The section II the 
candidate spectral estimation techniques are described. 
Performance of estimation techniques is assessed keeping 
in view the application for radar scenario.  In section III the 
framework of incorporating spectral estimation techniques 
to MI is provided. Section IV describes the simulation and 
results of MI and clutter spectral estimation techniques. 

 
II   OVERVIEW OF MI 

 
From the Transmit-Receive radar model in Figure 

1, the received signal at the receiver can be expressed as 
ሻݐሺݕ ൌ ݄ሺݐሻ כ ሻݐሺݔ  ܿሺݐሻ כ ሻݐሺݔ  ݊ሺݐሻ              1) 
 
The signal component is 
ሻݐௌሺݖ  ൌ ሻݐሺݔ כ ݄ሺݐሻ 2) 

The interference component is  
ሻݐூሺݖ  ൌ ݊ሺݐሻ  ሻݐሺݔ כ ܿሺݐሻ 3) 

where כ represents convolution, ݄ሺݐሻ is the target impulse 
response. The clutter response ܿሺݐሻ  is from a dense 
background and is spread through-out in time, and 
manifests at the receiver as self-interference term,	ݔሺݐሻ כ
ܿሺݐሻ . The receiver filter response is ݎሺݐሻ . The receiver 
thermal noise is 	݊ሺݐሻ, being a complex-valued, zero-mean 
additive white Gaussian noise (AWGN) with flat spectrum 
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and power spectral density (PSD) ܵሺ݂ሻ, which is non-
zero over the entire waveform bandwidth. Let ܿሺݐሻ	be a 
complex-valued, zero-mean Gaussian random process 
representing an interference component, characterized by 
the PSD ܵሺ݂ሻ.  
 

 
Figure 1 Radar Tx-Rx Model 

As described in [10], the SINR optimized transmitted 
signal ሼ ௌܺூேோሺ݂ሻሽ can be computed by solving 

ௌܺூேோሺ݂ሻ ൌ maxሺሻ 
|ுሺሻሺሻ|మ

ௌሺሻ|ሺሻ|మାௌሺሻ
݂݀	אஐ             4) 

The solution is 

| ௌܺூேோሺ݂ሻ|ଶ ൌ max ൬0, ඥ|ுሺሻ|
మௌሺሻ

ௌሺሻ
ߤ െ ටௌሺሻ

|ுሺሻ|మ
൨൰   5) 

where ߤ  is the Lagrangian multiplier constant determined 
from the energy constraint  |ܺሺ݂ሻ|ଶ݂݀ ൌ ஐܧ . Note that the 

self-interference clutter term ඥ|ுሺሻ|
మௌሺሻ

ௌሺሻ
 modulates the 

conventional water-filling solution,	ߤ െ ටௌሺሻ
|ுሺሻ|మ

൨. 

II SPECTRAL ESTIMATION 
Clutter can be defined as any unwanted radar echo 

[10]. A vast amount of literature is available on study of 
different types of clutter encountered in radar. A major 
focus has been on modelling the probability distribution of 
various types of clutter. In MI, however, analysis of the 
spectral characteristics of clutter is of importance. 

A simple ground clutter model was analysed in 
[11] using parametric methods of power spectral 
estimation. The true PSD or the ground-truth was 
determined by computing periodogram of 512 samples of a 
ground clutter model. Various parametric methods of PSD 
estimation like Maximum Entropy Method (MEM), 
Autoregressive Moving Average (ARMA), Prony’s Energy 
Spectral Estimation (PESD), least squares method (LSM), 
Maximum Likelihood method (MLM) were applied on test 
data lengths of 8 to 64 samples and a comparative analysis 
was made.  

An adaptive filter to reject clutter using an all pole 
autoregressive model for clutter was derived in [12][12]. 
The reason stated for choosing an AR model was to reduce 
the transient (convergence) time to a dwell time (20-30 
pulses). The results of the adaptive filter frequency 
response at the end of 15 adaptive samples were presented.  

[11] and [13] stated that since the traditional non-
parametric methods like periodogram and Blackman-
Tukey involve Fourier transform of a finite number of 
samples, there is considerable amount of frequency 
smearing in computed spectrum due to side-lobes of the 

(sin x)/x function. The frequency resolution is good if the 
data length is large, but it gets poorer as the data length 
decreases. A comparative study of all non-parametric and 
parametric methods was presented in [13] with 64 samples 
that consisted of three sinusoids of varying magnitude at 
different frequency locations and a coloured noise process. 
The non-parametric methods were unable to resolve close 
lying sinusoids but presence of coloured noise was well 
indicated while the parametric methods were concluded to 
be giving accurate estimates of the sinusoids. 

In general, the past works emphasize on the use of 
parametric methods of estimation when the number of 
samples available is less than about 64 samples. In a 
typical ground or ship based radar a larger number of 
clutter dominated samples are expected. In this case non-
parametric techniques are expected to give satisfactory 
results. 

Based on non-parametric techniques given in [14], 
simulations were undertaken to determine the ideal 
candidate techniques for subject case. Bartlet’s and 
Welch’s techniques are particularly suitable as the variance 
asymptotically reduces with increase in number of samples, 
whereas in other techniques like periodogram the variance 
remains unchanged.  
 

III   SPECTRAL ESTIMATION IN MI 
 The next task is to incorporate the preferred 
method for clutter spectral estimation into the MI 
framework as developed in [4] and analyse the 
performance degradation in SINR because of the use of the 
estimate of clutter spectrum in place of the actual or true 
spectrum.  
 To incorporate the clutter power spectrum 
estimation into the MI framework, the working of the 
system has been divided into two parts:  
- Learning cycle: Linear frequency modulation (LFM) 

signal is used for sounding the channel. Clutter PSD 
is estimated from single or multiple transmissions of 
LFM. LFM is quite common in modern radars and 
taken as a reasonable choice for probing the channel. 
In future other modulation schemes like NLFM, etc 
will also be investigated for probing the channel. 

- MI cycle: Using the estimated clutter PSD, MI signal 
and the corresponding receiver filter are generated. 
MI signal as generated is transmitted and SINR is 
computed after the receiver filter 

 
Learning cycle 

Figure 1 shows a block diagram of transmit- 
receive chain. In the first transmission-reception cycle, let 
ሻݐሺݔ  be linear frequency modulation (LFM) signal with 
finite-energy and Fourier transform ܺሺ݂ሻ.  

Also as the samples for clutter estimation are 
chosen without the influence of target, type of target will 
have no effect in estimating clutter.  
The power spectrum of interference is 
ሺ݂ሻܮ  ൌ ܵሺ݂ሻ  |ܺሺ݂ሻ|ଶܵሺ݂ሻ 6)  

The task is to estimate 	ܮሺ݂ሻ,	  using the 
Welch’s method of spectrum estimation. Assuming that  
ܵሺ݂ሻ is known and using	ܮሺ݂ሻ,	the estimate of ܵሺ݂ሻ 
is computed as   

 ሻݐሺݔ
Tx Signal 

݄ሺݐሻ

Target 
Response 

ܿሺݐሻ 

Target-
Dependant 

Noise 

+ 
 ሻݐሺݎ

Receiver 
Filter + 

݊ሺݐሻ

Receiver 
Thermal Noise 

ሻݐሺݕ
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 መܵԢሺ݂ሻ ൌ
หܮሺ݂ሻ െ ܵሺ݂ሻห

|ܺሺ݂ሻ|ଶ  7)  

 is impacted by the variance of the estimator that	ሺ݂ሻܮ
may result in inaccurate estimate of ܵሺ݂ሻ.  The 
transmitted energy is  

௫ܧ  ൌ න|ܺሺ݂ሻ|ଶ݂݀ 8)  

To estimate መܵԢሺ݂ሻ, the clutter return component 
( |ܺሺ݂ሻ|ଶܵሺ݂ሻ ) has to be higher than the noise 
component ܵሺ݂ሻ . Hence ܮሺ݂ሻ  and መܵԢሺ݂ሻ  are 
computed at higher transmitted energy. The estimate could 
be averaged over one or multiple ܯ  number of 
transmissions  

 መܵሺ݂ሻ ൌ
1
ܯ
 መܵԢ

ሺሻሺ݂ሻ
ெ

ୀଵ

 9)  

In the current framework the መܵሺ݂ሻ is considered valid for 
subsequent MI cycles, though it is possible to recursively 
update መܵሺ݂ሻ .  
 
MI cycle   
The MI transmit signal is computed by using Eq. (5) 
replacing ܵሺ݂ሻ with the estimated value መܵሺ݂ሻ, keeping 
energy in ܺሺ݂ሻ  and ܺெூሺ݂ሻ  same. This signal is 
transmitted in the next step, i.e. MI cycle 
 
 ห ܺெூሺ݂ሻห

ଶ ൌ maxൣ0, ᇱߤሺ݂ሻሺܤ െ   (ሺ݂ሻሻ൧ 10ܦ

where, 

ሺ݂ሻܤ  ൌ
ඥ|ܪሺ݂ሻ|ଶܵሺ݂ሻ

መܵሺ݂ሻ
 11)  

ሺ݂ሻܦ  ൌ ඨ
ܵሺ݂ሻ
  (ሺ݂ሻ|ଶ 12ܪ|

And to keep the energy of the LFM signal and the MI 
signal same, i.e. 

 න|ܺሺ݂ሻ|ଶ݂݀ ൌ නห ܺெூሺ݂ሻห
ଶ݂݀ 13)  

 ᇱ  needs to be computed by 1-D search methods [1]. Inߤ
our experiment, the well-known root-finding algorithm 
called secant method [15] has been used to compute ߤᇱ 
using Eq. (13) as the cost function.  
Computing ܮሺ݂ሻ for the next iteration (MI cycle),  
 
ሺ݂ሻܮ  ൌ ห ܺெூሺ݂ሻห

ଶ መܵሺ݂ሻ  ܵሺ݂ሻ 14)  

 Redesigning receiver filter for next iteration (MI cycle), 
 

 ܴሺ݂ሻ ൌ ݇ ቈ
ܺெூሺ݂ሻܪሺ݂ሻ݁ିଶగ௧

ሺ݂ሻܮ

כ

 15)  

In the second transmission-reception cycle, the transmitted 
signal ݔොሺݐሻ	is the MI waveform computed above and ̂ݎሺݐሻ 

is the corresponding receiver filter. This signal is subjected 
to the same environment as described in the previous cycle.  
The output at the receiver is 

 
ሻݐොሺݕ ൌ ሻݐሺݎ̂ כ ሾ݊ሺݐሻ  ሻݐොெூሺݔ כ ܿሺݐሻ

 ሻݐොெூሺݔ כ ݄ሺݐሻሿ 
16)  

Signal-to-interference ratio is given by 

 

ሺܴܵܰܫሻ௧

ൌ
ห ܺெூሺ݂ሻ ܴሺ݂ሻܪሺ݂ሻ݁ିଶగ௧݂݀

ஶ
ିஶ ห

ଶ

 ห ܴሺ݂ሻหଶ ቄห ܺெூሺ݂ሻห
ଶܵሺ݂ሻ  ܵሺ݂ሻቅ ݂݀

ஶ
ିஶ

17)

Putting value of ܴሺ݂ሻ from Eq. 15) and solving, we get 
 ሺܴܵܰܫሻ௧= 18)  

ቮ
ห ܺெூሺ݂ሻห

ଶ|ܪሺ݂ሻ|ଶ

ቂห ܺெூሺ݂ሻห
ଶ መܵሺ݂ሻ  ܵሺ݂ሻቃ

כ ݂݀
ஶ
ିஶ ቮ

ଶ


	ห ܺெூሺ݂ሻห

ଶ|ܪሺ݂ሻ|ଶ

ቚቂห ܺெூሺ݂ሻห
ଶ መܵሺ݂ሻ  ܵሺ݂ሻቃ

כ
ቚ
ଶ ቄห ܺெூሺ݂ሻห

ଶܵሺ݂ሻ  ܵሺ݂ሻቅ ݂݀
ஶ
ିஶ

 

 
IV   SIMULATION, RESULTS & CONCLUSION 

The clutter PSD ܵሺ݂ሻ	is assumed to be Gaussian 
and present in all range cells (without considerations of 
variation in return strength due to range). The noise is 
assumed to be additive white Gaussian noise (AWGN). 
CNR (clutter to noise ratio) and TNR (target to noise ratio) 
are both assumed to be 0 dB.  

The simulation is undertaken to estimate drop in 
SINR with respect to a case where true PSD of clutter is 
assumed to be known. The comparison is done by 
estimating clutter by  
- Varying the number of samples for estimation 
- Varying the transmitted energy 
- Varying the number of learning cycle iterations  

In the simulation, about 9000 samples are 
available for interference estimation. Welch’s method with 
50 samples segment length, Hamming window and 50% 
overlap is used to estimate ܮሺ݂ሻ. In the current simulation 
the ܺሺ݂ሻ generated is not subjected to constant amplitude 
constraint. 

Figure  are the plots for desired and estimated  
ሺ݂ሻܮ  and ܵሺ݂ሻ	 for LFM transmit signal. መܵሺ݂ሻ  is 
calculated by averaging መܵԢሺ݂ሻ		over two transmissions or 
iterations (M=2) as per Eq. (9). From the illustration, it is 
observed that in spite of presence of perturbations due to 
estimation errors, the estimates are close approximation of 
the ‘true’ values of ܮሺ݂ሻ and ܵሺ݂ሻ. 

 
(a)                       (b) 

Figure 2. (a) True ܮሺ݂ሻ (blue) and ܮሺ݂ሻ	(green) (b) True ܵሺ݂ሻ (blue) 
and መܵሺ݂ሻ (green) for 9000 samples and 2 learning cycle iterations 
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The simulations were undertaken for two different 
types of targets. In the first case, a point target is assumed, 
with a flat spectrum in the bandwidth of transmission. In 
the second case an extended stochastic target was modeled 
with Gaussian spectrum within the bandwidth of 
transmission which is fairly separated from the clutter 
spectrum. Figure 3 shows extended target, clutter and noise 
PSDs in the bandwidth of 1 MHz. 

 
Figure 3. PSDs of extended target (red), clutter (blue) and noise (green) 

 
Table 1 Comparison of SINR values for different Tx-Rx models 
(TxEnergy=4000) (from Fig. 4) 

 

 

 
 
 
  

Table 2 SINR vs number of samples for estimation – Point Target (from 
Fig. 5) 

 
Error! Reference source not found.shows variation of 
SINR with TxEnergy. TxEnergy is given by equation 8) in 
dB with respect to the noise floor assumed to be 0 dB. 
Error! Reference source not found. (a) shows the 
SINR plots where መܵሺ݂ሻ	is computed using 100 samples 
while in Error! Reference source not found.4 (b) it is 
computed using 3000 samples. In each of these figures, 
multiple SINR plots represent መܵሺ݂ሻ	being computed with 
one or more transmission iterations as per equation (9). It 
is evident from the figures that as the clutter PSD 
estimation improves with increase in the number of 
samples, performance in terms of SINR also improves with 
increase in the number of samples. Also there is further 
improvement in SINR if the number of transmission 
iterations for estimation increases.  
 

 tabulates the values from Error! Reference 
source not found.4 (a) and (b) for point and extended 
targets respectively at a fixed transmit energy. 

Figure shows SINR variation with number of 
samples for clutter estimation when the target is point. The 
set of sample lengths for which SINR has been computed 
are 100, 500, 1000, 2000, 3000, 4000 and 5000. The 
TxEnergy has been kept fixed at 1200 for computing the 
SINR values. The desired SINR is 58.85 dB. Different 
plots of SINR have been computed using 1, 2 and 5 
transmission iterations for clutter estimation. Error! 
Reference source not found. tabulates the values from 
Figure5 for reference. 
 
 
 
 
 
Table 3 Summary table - SINR drop at fixed TxEnergy for Point Target 
(from Fig. 4) 

 summarizes the performance in terms of SINR 
drop with small and large number of samples for 
estimation with one and two transmission iterations at a 
fixed TxEnergy.  
 

 
(a) 

 
(b) 

Figure 4. SINR Vs. TxEnergy with (a)100 samples and 3000 samples for 
estimation. Color coding of the plots is: MI with optimal Rx (black), MI 
with optimal Rx with estimation (red), Chirp with Matched filter 
(conventional) (magenta) 
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MI Tx Waveform + Optimum Filter
MI Tx Waveform + Optimum Filter (Est with 100 samples)
MI Tx Waveform + Optimum Filter (Est with 3000 samples)
Chirp Tx Waveform + Matched Filter

Type of Target 
Tx-Rx Model 

Point 
Target 

Extended 
Target 

MI + OptFilter 62.57 85.85 

MI + 
OptFilter 
(Estimate) 

100 
samples 60.78 85.51 

3000 
samples 61.71 85.74 

Chirp + Matched Filter 58.36 79.84 

No of 
samples  

100 500 1000 3000 5000 

Desired 
SINR  

58.85 

1 iteration  38.8 49.7 58.28 58.38 58.4 
2 iterations  57.4 58 58.47 58.38 58.4 
5 iterations  58.1 58.3 58.4 58.4 58.46 
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Figure 5. SINR plots for different number of samples for estimation 
(TxEnergy=1200). Color coding of the plots: Desired (black), 1 iteration 
(red), 2 iterations (green), 5 iterations (magenta) 
 
 
 
 
Table 3 Summary table - SINR drop at fixed TxEnergy for Point Target 
(from Fig. 4) 

No of samples 100  3000  
1 iteration  20 .05 0.47  
2 iterations  1.45 0.47 

 
Based on the above results, we conclude that the 
techniques such as Welch provide reasonable performance 
in estimation of clutter PSD. The eventual loss of SINR 
with real-time clutter estimation is not very significant, 
provided sufficient samples are available to estimate clutter 
or estimation can be averaged over multiple transmissions. 
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